

Public Products List

Publict Products are off the shelf products. They are not dedicated to specific customers, they are available through ST Sales team, or Distributors, and visible on ST.com

PCN Title: STM32C031xx - product enhancement

PCN Reference: MDG/22/13524

Subject: Public Products List

Dear Customer,

There is no Standard Public Products impacted by the change

IMPORTANT NOTICE - PLEASE READ CAREFULLY

Subject to any contractual arrangement in force with you or to any industry standard implemented by us, STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

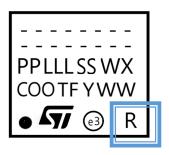
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

PRODUCT/PROCESS CHANGE NOTIFICATION PCN13524

- Additional information

STM32C031xx - product enhancement

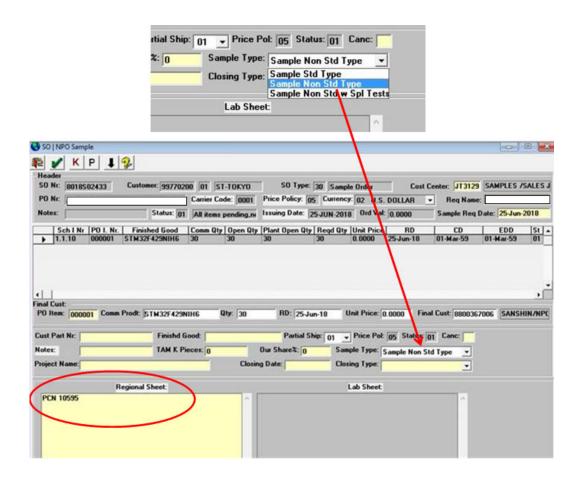

MDG – General Purpose Microcontrollers Division (GPM)

What are the changes?

Changes described in table below:

STM32C031xx	Current Cut1.0	New Cut1.1
Die revision Marking R	"A"	"Z"

Example: Marking on package LQFP 32L 7x7



How to order samples?

For all samples request linked to this PCN, please:

- place a **Non-standard** sample order (choose Sample Non Std Type from pull down menu)
- insert the PCN number "PCN13524" into the NPO Electronic Sheet/Regional Sheet
- request sample(s) through Notice tool, indicating a single Commercial Product for each request

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics International NV and its affiliates ("ST") reserve the right to make changes corrections, enhancements, modifications, and improvements to ST products and/or to this document any time without notice. This document is provided solely for the purpose of obtaining general information relating to an ST product. Accordingly, you hereby agree to make use of this document solely for the purpose of obtaining general information relating to the ST product. You further acknowledge and agree that this document may not be used in or in connection with any legal or administrative proceeding in any court, arbitration, agency, commission or other tribunal or in connection with any action, cause of action, litigation, claim, allegation, demand or dispute of any kind. You further acknowledge and agree that this document shall not be construed as an admission, acknowledgement or evidence of any kind, including, without limitation, as to the liability, fault or responsibility whatsoever of ST or any of its affiliates, or as to the accuracy or validity of the information contained herein, or concerning any alleged product issue, failure, or defect. ST does not promise that this document is accurate or error free and specifically disclaims all warranties, express or implied, as to the accuracy of the information contained herein. Accordingly, you agree that in no event will ST or its affiliates be liable to you for any direct, indirect, consequential, exemplary, incidental, punitive, or other damages, including lost profits, arising from or relating to your reliance upon or use of this document.

Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement, including, without limitation, the warranty provisions thereunder.

In that respect please note that ST products are not designed for use in some specific applications or environments described in above mentioned terms and conditions.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

Information furnished is believed to be accurate and reliable. However, ST assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously in any prior version of this document.

© 2022 STMicroelectronics - All rights reserved

Reliability Evaluation Report

MDG-MCD-RER2019

STM32C031x (453x66)

Reliability Evaluation Purpose (New Product Qualification)

Gen	General Information				
Commercial Product	STM32C031x				
Product Line	453x66				
Die revision	453XXXA (Cut1.0) and 453XXXZ (Cut1.1)				
Product Description	STM32C031x				
Package	LQFP48 7x7, LQFP32 7x7, UFQFPN48 7x7, UFQFPN32 5x5, UFQFPN28 4x4, TSSOP20				
Silicon Technology	TSMC90 HVT FAB14				
Division	MDG-MCD				
Reliability Maturity Level	: 20->W29				

•	Taceability
Diffusion Plant	TSMC Fab14, Taiwan
Assembly Plant	JSCC, China ATP1, AMKOR, Philippines ASEKH, Taiwan
Reliabi	lity Assessment
Pass	×
Fail	
Investigation required	0

Traceability

Note: this report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the electronic device conformance to its specific mission profile. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics or under the approval of the author (see below).

Version	Date	Author	Function
1.0	3 rd DEC 2021	Matthieu BONELLI	MDG-MCD-Q&R Engineer
1.1	18th FEB 2022	Matthieu BONELLI	MDG-MCD-Q&R Engineer
1.2	30 th JUN 2022	Matthieu BONELLI	MDG-MCD-Q&R Engineer

APPROVED BY:

VERSION 1.0

Function	Location	Name	Date
BE Quality Manager	Rousset	Gisele SEUBE	8 th DEC 2021
Division Q&R Responsible	Grenoble	Dominique GALIANO	9th DEC 2021
Division Quality Manager	Rousset	Pascal NARCHE	13 th DEC 2021

VERSION 1.1

Function	Location	Name	Date
Division Q&R Responsible	Grenoble	Dominique GALIANO	21 FEB 2022

VERSION 1.2

Function	Location	Name	Date
Division Q&R Responsible	Grenoble	Dominique GALIANO	30 JUN 2022

TABLE OF CONTENTS

1	RELIA	BILITY	Y EVALUATION OVERVIEW	4
	1.1	OBJEC ⁻	TIVE	4
			BILITY STRATEGY	
	1.3	Conci	LUSION	6
2	PROD	UCT C	OR TEST VEHICLE CHARACTERISTICS	7
	2.1	GENER	RALITIES	7
			EABILITY	
	2.2	2.1	Wafer fab information	7
			Assembly information	
			Reliability testing information	
3	TESTS	RESU	JLTS SUMMARY	11
			NFORMATION	
	3.2	TEST P	PLAN AND RESULTS SUMMARY	12
4	APPLIC	CABLE	E AND REFERENCE DOCUMENTS	17
5	GLOSS	SARY.		18
6	REVISI	ION H	HISTORY	18

1 RELIABILITY EVALUATION OVERVIEW

1.1 Objective

The aim of this report is to present results of the reliability evaluation performed on STM32C031x - DIE453XXXA and STM32C031x - DIE453XXXZ.

Test vehicle is described here below:

Product	Process or Package	Diffusion or Assembly plant
STM32C031C6T6	90 HVT, LQFP 7x7 48L	TSMC Fab14, JSCC
STM32C031K6T6	90 HVT, LQFP 7x7 32L	TSMC Fab14, JSCC
STM32C031C6U6	90 HVT, UFQFPN48 7x7	TSMC Fab14, JSCC
STM32C031K6U6	90 HVT, UFQFPN32 5x5	TSMC Fab14, JSCC
STM32C031G6U6	90 HVT, UFQFPN28 4x4	TSMC Fab14, JSCC
STM32C031F6P6	90 HVT, TSSOP20	TSMC Fab14, ATP1

Qualification is based on standard STMicroelectronics Corporate Procedures for Quality and Reliability, in full compliancy with the JESD-47 international standard

1.2 Reliability Strategy

The STM32C031x - Die 453XXXA and STM32C031x - Die 453XXXZ, is processed in the TSMC90 process from TSMC Fab14 Taiwan plant which is qualified through:

STM32L4x (die 415): RERMCD 1112 STM32L4x (die 435): RERMCD 1424 STM32L4x (die 462): RERMCD 1526 STM32L4x (die 461): RERMCD 1521 STM32G0 (die 460): RERMCD 1602 STM32G0 (die 466): RERMCD 1808

Based on these data, and according to "RELIABILITY TESTS AND CRITERIA FOR QUALIFICATION" specification (DMS 0061692), the following qualification strategy has been defined:

• Die Qualification:

Projects STM32C031x and STM32C011x are linked (Only RAM size changes. Remaining part are similar): 3 lots in total are needed for HTOL.

Cut1.0: Full reliability exercise on 2 diffusion lots for STM32C031x and 1 diffusion lot for STM32C011x to assess the die in LQFP48 package.

Cut1.1: Subset qualification on 1 diffusion lot for STM32C031x to assess the die in LQFP48 package.

Note: ESD HBM & LU is done in LQFP48 (Max pin count).

• Package Qualification:

The STM32C031x (Die 453) device is assembled in the following packages already qualified for this product family:

Package	Reference	Assy Plant location	
LQFP48 7x7 P0.5	RERMCD1621	JSCC	
LQFP32 7x7 P0.8	RERMCD1621	JSCC	
UFQFPN48 7x7 P0.5	RERMCD1622	JSCC	
UFQFFN46 7X7 FU.3	RERMCD1808	Jacc	
UFQFPN32 5x5 P0.5	RERMCD1622	JSCC	
or Qi FN32 3X3 F0.3	RERMCD1808	Jacc	
UFQFPN28 4x4 P0.5	RERMCD1623	JSCC	
TSSOP20 P0.65	RERMCD1712	ATP1	

The reliability test plan and result summary are presented in the following table:

Package	Body	Pitch	Package Code	Wire	Assy	Bounding Option	Trial
LQFP48	7x7	0.5	5B	Gold	JSCC	NA	1 reliability lot + CA focusses on FE/BE interface
LQFP32	7x7	0.8	5V	Gold	JSCC	NA	CDM only
UFQFPN48	7x7	0.5	A0B9	Gold	JSCC	NA	1 reliability lot + CA focusses on FE/BE interface
UFQFPN32	5x5	0.5	A0B8	Gold	JSCC	NA	CDM only
UFQFPN28	4x4	0.5	A0B0	Gold	JSCC	NA	1 reliability lot + CA focusses on FE/BE interface
TSSOP20		0.65	YA	Gold	ATP1	NA	1 reliability lot + CA focusses on FE/BE interface

For LQFP32 we can apply similarity rules with LQFP48 so only CDM needed. For UFQFN32, only CDM needed thanks to available reliability on same packages with similar die sizes.

1.3 Conclusion

All reliability tests have been completed with positive results. Neither functional nor parametric rejects were detected at final electrical testing.

According to good reliability tests results in line with validated product mission profile and reliability strategy, the waiver 29 is granted for the STM32C031x- Die 453XXXA and STM32C031x- Die 453XXXZ for LQFP48, LQFP32, UFQFPN48, UFQFPN32, UFQFPN28, TSSOP20 packages.

Refer to Section 3.0 for reliability test results.

2 PRODUCT OR TEST VEHICLE CHARACTERISTICS

2.1 Generalities

STM32C0 family (DIE 443 & 453) is a derivated from STM32L4 family.

For additional information concerning the product behavior, refer to STM32C031x datasheet.

2.2 Traceability

2.2.1 Wafer fab information

Table 1

Wafer fab information				
FAB1				
Wafer fab name / location	TSMC Fab14 / Taiwan			
Wafer diameter (inches)	12			
Wafer thickness (µm)	775			
Silicon process technology	TN090CE			
Number of masks	39			
Die finishing front side (passivation) materials/thicknesses	USG + NITRIDE/1.9µm			
Die finishing back side Materials/thicknesses	RAW SILICON			
Die area (Stepping die size) (µm)	X:1419.8µm Y:2074.2µm 2.9449 mm²			
Die pad size (µm)	123, 59			
Sawing street width (X,Y) (µm)	80, 80			
Metal levels/Materials/Thicknesses	Rank - Metal composition - Thickness (µm) 1 - TaN/Ta/CuSeed/Cu - 0.240 / 2 - TaN/Ta/CuSeed/Cu - 0.310 3 - TaN/Ta/CuSeed/Cu - 0.310 / 4 - TaN/Ta/CuSeed/Cu - 0.310 5 - TaN/Ta/CuSeed/Cu - 0.310 / 6 - TaN/Ta/CuSeed/Cu - 0.850 7 - AlCu - 1.450			
Die over coating (material/thickness)				
FIT level (Ea=0.7eV, C.L: 60%, 55°C)	2 FITs			
Soft Error Rate - Alpha SER [FIT/Mb] - Neutron SER [FIT/Mb] - Conditions	Alpha SER: 491 FIT/Mb Neutron SER: 445 FIT/Mb Neutron SER is an estimation at sea level of NYC (14n/h/cm²). Alpha result is estimated using a nominal flux of 0.001α/h/cm²			
Wafer Level Reliability - Electro-Migration (EM) - Time Dependent Dielectric Breakdown (TDDB) or Gate Oxide Integrity (GOI) - Hot Carrier Injection (HCI) - Negative Bias Thermal Instability (NBTI) - Stress Migration (SM)	Yes STM32G0x, STM32L4x, STM32G4x product family, 415, 435,			
Other Device(s) using same process	461, 462, 464, 470, 468, 469, 466, 479			

2.2.2 Assembly information

Table 2

Assembly Information				
Package 1 - LQFP 7x7x1.4 48L 5B				
Assembly plant name / location	STATSChipPAC SCCJ / SC-StatsChippac-China (SCCJ)			
Pitch (mm)	0.5			
Die thickness after back-grinding (µm)	375±25			
Die sawing method	Laser groove + mechanical sawing			
Bill of Material elements				
Lead frame/reference	LQFP48L 184sq Eff slots pur tin STMP LF JSCC			
Lead frame finishing (material/thickness)	Pure Tin (e3): tolerance 7 to 20 µm			
Die attach material/type glue	D/A Ablestik 3230			
Wire bonding material/diameter	Gold Wire/0.8mil			
Molding compound material/supplier/reference	Mold Sumitomo low alpha G631SHQ			
Package Moisture Sensitivity Level (JEDEC J-STD020D)	MSL3			
Package 2 - LQFP 7x7x1.4 32L 5V				
Assembly plant name / location	STATSChipPAC SCCJ / SC-StatsChippac-China (SCCJ)			
Pitch (mm)	0.8			
Die thickness after back-grinding (µm)	375±25			
Die sawing method	Laser groove + mechanical sawing			
Bill of Material elements				
Lead frame/reference	LQ7 32L 184sq Eff slots STMP LF JSCC			
Lead frame finishing (material/thickness)	Pure Tin (e3): tolerance 7 to 20 µm			
Die attach material/type glue	D/A Ablestik 3230			
Wire bonding material/diameter	Gold Wire/0.8mil			
Molding compound material/supplier/reference	Mold Sumitomo low alpha G631SHQ			
Package Moisture Sensitivity Level (JEDEC J-STD020D)	MSL3			
Package 3 - UFQFPN 7x7x0.55 48L A0B9				
Assembly plant name / location	STATS ChipPAC/ China (SCCJ)			
Pitch (mm)	0.5			
Die thickness after back-grinding (µm)	150±25			
Die sawing method	Laser groove + mechanical sawing			
Bill of Material elements				
Lead frame/reference	Rough Cu LF UQFN48L 5.2sq Groove JSCC			
Lead frame finishing (material/thickness)	Pure Tin (e3): tolerance 7 to 20 µm			
Die attach material/type glue	Glue Hitachi EN4900GC			
Wire bonding material/diameter	Gold Wire/0.8mil			
Molding compound material/supplier/reference	RESIN SUMITOMO G770			
Package Moisture Sensitivity Level (JEDEC J-STD020D)	MSL3			

	<u> </u>				
Package 4 - UFQFPN 5X5X0.55 32L A0B8					
Assembly plant name / location	STATS ChipPAC/ China (SCCJ)				
Pitch (mm)	0.5				
Die thickness after back-grinding (µm)	150±25				
Die sawing method	Laser groove + mechanical sawing				
Bill of Material elements					
Lead frame/reference	HD LF FOR UQFN 5x5 32L Sn PAD 3.1 MM SQ Groove				
Lead frame finishing (material/thickness)	Pure Tin (e3): tolerance 7 to 20 μm				
Die attach material/type glue	Glue Hitachi EN4900GC				
Wire bonding material/diameter	Gold Wire/0.8mil				
Molding compound material/supplier/reference	RESIN SUMITOMO G770				
Package Moisture Sensitivity Level (JEDEC J-STD020D)	MSL3				
Package 5 - UFQFPN 4X4X0.55 28L A0B0					
Assembly plant name / location	STATS ChipPAC/ China (SCCJ)				
Pitch (mm)	0.5				
Die thickness after back-grinding (µm)	150±25				
Die sawing method	Laser groove + mechanical sawing				
Bill of Material elements					
Lead frame/reference	LF UQFN4x4 COL 020614H uPPF3L 4UP JSCC				
Lead frame finishing (material/thickness)	Pure Tin (e3): tolerance 7 to 20 µm				
Die attach material/type film	DAF HITACHI HR-5104T-25				
Wire bonding material/diameter	Gold Wire/0.8mil				
Molding compound material/supplier/reference	MOLD COMPOUND SUMITOMO EME G770HCD				
Package Moisture Sensitivity Level (JEDEC J-STD020D)	MSL3				
Package 6 - TSSOP 20 BODY 4.4 YA					
Assembly plant name / location	ATP1 AMKOR/Philippines				
Pitch (mm)	0.65				
Die thickness after back-grinding (µm)	275±25				
Die sawing method	Laser groove + mechanical sawing				
Bill of Material elements					
Lead frame/reference	TSSOP20 2.4x3.6 2sRough CuLF SID101403921				
Lead frame finishing (material/thickness)	Pure Tin (e3): tolerance 7 to 20 µm				
Die attach material/type glue	GLUE D/A ABLESTIK 8290				
Wire bonding material/diameter	Gold Wire/0.8mil				
Molding compound material/supplier/reference	Resin Sumitomo EME-G700LS				
Package Moisture Sensitivity Level (JEDEC J-STD020D)	MSL1				

2.2.3 Reliability testing information

Table 3

Reliability Testing Information	
Poliability laboratory name / location	RCCAL / ROUSSET
Reliability laboratory name / location	GRAL / GRENOBLE

Note: ST is ISO 9001 certified. This induces certification of all internal and subcontractor labs. ST certification document can be downloaded under the following link: http://www.st.com/content/st_com/en/support/quality-and-reliability/certifications.html

3 TESTS RESULTS SUMMARY

3.1 Lot Information

Table 4

Lot #	Diffusion Lot / Wafer ID	Die Revision (Cut)	Assy Lot / Trace Code	Raw Line	Package	Note
1	9R115536/ WAFER#11	1.0	GQ1242BF	705B*453ESXA	LQFP 7x7 48L	Die and Package Reliability assessment
2	9R111492/ WAFER#24	1.0	GQ1242BE	705B*453ESXA	LQFP 7x7 48L	Die Reliability assessment
3	9R117550/ WAFER#24	1.0	GQ1282A8	705B*443ESXA	LQFP 7x7 48L	Die Reliability assessment
4	9R115536/ WAFER#11	1.0	GQ128200	705V*453ESXA	LQFP 7x7 32L	Package Reliability assessment
5	9R115536/ WAFER#9	1.0	GQ128201	70MB*453ESXA	UFQFPN 7x7 48L	Package Reliability assessment
6	9R115536/ WAFER#12	1.0	GQ128203	70MG*453ESXA	UFQFPN 5x5 32L	Package Reliability assessment
7	9R115536/ WAFER#9	1.0	GQ127202	70MB*453ESXA	UFQFPN 4x4 28L	Package Reliability assessment
8	9R115536/ WAFER#10	1.0	7B126464	POYA*453ESXA	TSSOP20	Package Reliability assessment
9	9R116515/ WAFER#13	1.1	GQ21524C	705B*453ESXZ	LQFP 7x7 48L	DIE Reliability assessment

3.2 Test plan and results summary

<u>Table 5</u> - ACCELERATED LIFETIME SIMULATION TESTS

For LQFP 7x7 48L

Test code	Stress method	Stress Conditions	Lots	S.S.	Total	Results/Lot Fail/S.S.	Comments: (N/A =Not Applicable)
HTOL	JESD22 A108	Ta=125°C Duration= 1200H 3V6	2	77	144	Lot1: 0/77 Lot2: 0/77	
		Ta=125°C Duration= 600H 3V6	2	77	144	Lot3:0/77 Lot9:0/77	Lot 3 using die443, STM32C011x product
	Ansi/ESDA/ JEDEC JS-001	1500 Ω, 100 pF 2kV class2	2	3	6	Lot1: 0/3 Lot9: 0/3	
LatchUp	JESD78	130°C	2	3	6	Lot1:0/3 Lot9:0/3	
EDR	JESD22-A117	10kcy EW @ 125°C then Storage HTB 150°C - Duration 1500H	1	77	77	Lot1: 0/77	
EDR	JESD22-A117	10kcy EW @ 125°C then Storage HTB 150°C - Duration 168H	1	77	77	Lot9: 0/77	
EDR	JESD22-A117	10kcy EW @ 25°C then Storage HTB 150°C - Duration 168h	1	77	77	Lot1: 0/77	
EDR	JESD22-A117	10kcy EW @ -40°C then Storage HTB 150°C - Duration 168H	1	77	77	Lot1: 0/77	
ELFR	JESD22-A108 JESD74	Ta=125°C Duration= 48hrs 3V6	3	500	1500	Lot1: 0/500 Lot2: 0/500 Lot9: 0/500	

Table 6 - ACCELERATED ENVIRONMENT STRESS TESTS

Note: Test method revision reference is the one active at the date of reliability trial execution

LQFP7x7 48L, JSCC

Test code	Stress method	Stress Conditions	Lots	S.S.	Total	Results/Lot Fail/S.S.	Comments: (N/A =Not Applicable)
ESD CDM	ANSI/ESDA/ JEDEC JS-002	500V	2	3	6	Lot1: 0/3 Lot9: 0/3	
PC	J-STD-020	24h bake@125°C, MSL3 (192h@30C/60%RH) 3x Reflow simulation Peak Reflow Temp= 260°C	1	308	308	Lot1: 0/308	
тс	JESD22-A104	Ta=−65/150°C Duration= 500cyc ☑ After PC	1	77	77	Lot1: 0/77	
UHAST	JESD22-A118	Ta=130°C ,85% RH Duration= 96hrs ⊠ After PC	1	77	77	Lot1: 0/77	
HTSL	JESD 22-A103	Ta=150°C , Duration= 1000hrs ⊠ After PC	1	77	77	Lot1: 0/77	
ТНВ	JESD 22-A101	Ta=85°C/85%RH VDD=3v6 ⊠ After PC	1	77	77	Lot1: 0/77	
CA	Construction Analysis including -Wire bond shear -Wire bond pull	internal ST Specs	1	50	50	Lot1:0/50	

LQFP7x7 32L, JSCC

Test code	Stress method	Stress Conditions	Lots	S.S.	Total	Results/Lot Fail/S.S.	Comments: (N/A =Not Applicable)
ESD CDM	ANSI/ESDA/ JEDEC JS-002	500V	1	3	3	Lot4: 0/3	

UFQFPN7x7 48L, JSCC

Test code	Stress method	Stress Conditions	Lots	S.S.	Total	Results/Lot Fail/S.S.	Comments: (N/A =Not Applicable)
ESD CDM	ANSI/ESDA/ JEDEC JS-002	500V	1	3	3	Lot5: 0/3	
PC	J-STD-020	24h bake@125°C, MSL3 (192h@30C/60%RH) 3x Reflow simulation Peak Reflow Temp= 260°C	1	308	308	Lot5: 0/308	
тс	JESD22-A104	Ta=−65/150°C Duration= 500cyc ☑ After PC	1	77	77	Lot5: 0/77	
UHAST	JESD22-A118	Ta=130°C ,85% RH Duration= 96hrs ⊠ After PC	1	77	77	Lot5: 0/77	
HTSL	JESD 22-A103	Ta=150°C , Duration= 1000hrs ⊠ After PC	1	77	77	Lot5: 0/77	
ТНВ	JESD 22-A101	Ta=85°C/85%RH VDD=3v6 ⊠ After PC	1	77	77	Lot5: 0/77	
CA	Construction Analysis including -Wire bond shear -Wire bond pull	internal ST Specs	1	50	50	Lot5: 0/50	

UFQFPN5x5 32L, JSCC

Test code	Stress method	Stress Conditions	Lots	S.S.	Total	Results/Lot Fail/S.S.	Comments: (N/A =Not Applicable)
ESD CDM	ANSI/ESDA/ JEDEC JS-002	500V	1	3	3	Lot6: 0/3	

UFQFPN4x4 28L, JSCC

Test code	Stress method	Stress Conditions	Lots	S.S.	Total	Results/Lot Fail/S.S.	Comments: (N/A =Not Applicable)
ESD CDM	ANSI/ESDA/ JEDEC JS-002	500V	1	3	3	Lot7: 0/3	
PC	J-STD-020	24h bake@125°C, MSL3 (192h@30C/60%RH) 3x Reflow simulation Peak Reflow Temp= 260°C	1	308	308	Lot7: 0/308	
TC	JESD22-A104	Ta=−65/150°C Duration= 500cyc ⊠ After PC	1	77	77	Lot7: 0/77	
UHAST	JESD22-A118	Ta=130°C ,85% RH Duration= 96hrs ⊠ After PC	1	77	77	Lot7: 0/77	
HTSL	JESD 22-A103	Ta=150°C , Duration= 1000hrs ⊠ After PC	1	77	77	Lot7: 0/77	
ТНВ	JESD 22-A101	Ta=85°C/85%RH VDD=3v6 ⊠ After PC	1	77	77	Lot7: 0/77	
CA	Construction Analysis including -Wire bond shear -Wire bond pull	internal ST Specs	1	50	50	Lot7: 0/50	

TSSOP20, ATP1

Test code	Stress method	Stress Conditions	Lots	S.S.	Total	Results/Lot Fail/S.S.	Comments: (N/A =Not Applicable)
ESD CDM	ANSI/ESDA/ JEDEC JS-002	500V	1	3	3	Lot8: 0/3	
PC	J-STD-020	24h bake@125°C, MSL1 (168h@85C/85%RH) 3x Reflow simulation Peak Reflow Temp= 260°C	1	308	308	Lot8: 0/308	
тс	JESD22-A104	Ta=-65/150°C Duration= 500cyc ⊠ After PC	1	77	77	Lot8: 0/77	
UHAST	JESD22-A118	Ta=130°C ,85% RH Duration= 96hrs ⊠ After PC	1	77	77	Lot8: 0/77	
HTSL	JESD 22-A103	Ta=150°C , Duration= 1000hrs ⊠ After PC	1	77	77	Lot8: 0/77	
ТНВ	JESD 22-A101	Ta=85°C/85%RH VDD=3v6 ⊠ After PC	1	77	77	Lot8: 0/77	
CA	Construction Analysis including -Wire bond shear -Wire bond pull	internal ST Specs	1	50	50	Lot8: 0/50	

4 APPLICABLE AND REFERENCE DOCUMENTS

Reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits
SOP2.4.4	Record Management Procedure
SOP2.6.2	Internal Change Management
SOP2.6.7	Finished Good Maturity Management
SOP2.6.9	Package & Process Maturity Management in BE
SOP2.6.11	Program Management for Product Development
SOP2.6.17	Management of Manufacturing Transfers
SOP2.6.19	Front-End Technology Platform Development and Qualification
DMS 0061692	Reliability Tests and Criteria for Product Qualification
ANSI/ESDA	Electrostatic discharge (ESD) sensitivity testing human body model (HBM)
JEDEC JS-001	Electrostatic discharge (LSD) sensitivity testing numan body model (HBM)
ANSI/ESDA	Electrostatic discharge (ESD) sensitivity testing charge device model (CDM)
JEDEC JS-002	Electiostatic discharge (ESD) schistivity testing charge device model (EDM)
JESD78	IC Latch-up test
JESD 22-A108	Temperature, Bias and Operating Life
JESD 22-A117	Endurance and Data retention
JESD 22-A103	High Temperature Storage Life
J-STD-020:	Moisture/reflow sensitivity classification for non-hermetic solid state surface mount devices
JESD22-A113:	Preconditioning of non-hermetic surface mount devices prior to reliability testing
JESD22-A118:	Unbiased Highly Accelerated temperature & humidity Stress Test
JESD22-A104:	Temperature cycling
JESD22-A110:	Temperature Humidity Bake
JESD 22B102:	Solderability test
JESD22B100/B108:	Physical dimension

5 **GLOSSARY**

Reference	Short description				
HTOL	High Temperature Operating Life				
EDR	Endurance and Data Retention				
ELFR	Early Failure Rate				
PC	Preconditioning (solder simulation)				
ТНВ	Temperature Humidity Bias				
TC	Temperature cycling				
uHAST	Unbiased Highly Accelerated Stress Test				
HTSL	High temperature storage life				
DMS	ST Advanced Documentation Controlled system/ Documentation Management system				
ESD HBM	Electrostatic discharge (human body model)				
ESD CDM	Electrostatic discharge (charge device model)				
LU	Latch-up				
CA	Construction Analysis				

6 REVISION HISTORY

Revision	Author	Content description	Approval List			
			Function	Location	Name	Date
1.0	Matthieu BONELLI	Initial Release	Div. Quality Manager	Rousset	Pascal NARCHE	13 th DECEMBER 2021
			Q&R Quality Manager	Grenoble	Dominique GALIANO	9th DECEMBER 2021
			BE Quality Manager	Rousset	Gisele SEUBE	8 th DECEMBER 2021
1.1	Matthieu BONELLI	Add results of UFQFPN48, UFQFPN32, UFQFPN28 and TSSOP20	Q&R Quality Manager	Grenoble	Dominique GALIANO	21rst FEBRUARY 2022
1.2	Matthieu BONELLI	Add results of cut1.1	Q&R Quality Manager	Grenoble	Dominique GALIANO	30 th June 2022

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics International NV and its affiliates ("ST") reserve the right to make changes corrections, enhancements, modifications, and improvements to ST products and/or to this document any time without notice.

This document is provided solely for the purpose of obtaining general information relating to an ST product. Accordingly, you hereby agree to make use of this document solely for the purpose of obtaining general information relating to the ST product. You further acknowledge and agree that this document may not be used in or in connection with any legal or administrative proceeding in any court, arbitration, agency, commission or other tribunal or in connection with any action, cause of action, litigation, claim, allegation, demand or dispute of any kind. You further acknowledge and agree that this document shall not be construed as an admission, acknowledgement or evidence of any kind, including, without limitation, as to the liability, fault or responsibility whatsoever of ST or any of its affiliates, or as to the accuracy or validity of the information contained herein, or concerning any alleged product issue, failure, or defect. ST does not promise that this document is accurate or error free and specifically disclaims all warranties, express or implied, as to the accuracy of the information contained herein. Accordingly, you agree that in no event will ST or its affiliates be liable to you for any direct, indirect, consequential, exemplary, incidental, punitive, or other damages, including lost profits, arising from or relating to your reliance upon or use of this document.

Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement, including, without limitation, the warranty provisions thereunder.

In that respect please note that ST products are not designed for use in some specific applications or environments described in above mentioned terms and conditions.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

Information furnished is believed to be accurate and reliable. However, ST assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously in any prior version of this document.